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FOREWORD

This report was prepared under the National Aeromautics and Space
Administration Grant No. NGL-33-016-119, which Grant supports the
research involving the problem of sonic boom, The purpose of this
research is to study the diffraction of a plane shock wave by general

two-dimensional weak disturbances.
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ABSTRACT

Solutions for the diffraction of a plane shock wave by general two-
dimensional weak disturbances ;re obtained. The technique employed is an
extension of the method developed by Ting and Ludloff for the solution of
aerodynamics of blasts. Disturbances due to a solid body are prescribed
by distributions of sources, doublets and vortices in a two-dimensional
case and by a distribution of point sources in an axisymmetric case. The
disturbance pressure behind an advancing shock is expressed by integrals
of distributions. The shape of diffracted shock and other disturbance
quantities are expressed in terms of disturbance pressure behind the
shock and disturbance velocity components ahead of the shock., Application
to shock diffraction of thin structuré in still air is shown. Some other

applications are indicated.
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I. INTRODUCTION

In this report, the solutions for the diffraction of a plane shock
wave by general two-dimensional weak disturbances are presented. The
technique employed here is an extension of the method developed for the
aerosynamics of blastsl’z° The present solutions can be applied to many
practically interesting shock diffraction problems, such as blast effetts
on aircrafts and on wings at angles of attack, moving subsonically or
supersonically, diffraction of shock due to turbulances in atmosphere,
diffraction of shock due to non-smooth walls in shock tubes and diffraction
of sonic-booms due to non-planar surfaces on the ground,

Disturbances can be described by the distributions of sources (or
sinks), doublets, and vortices in a two-dimensional diffraction problem,
and by distribution of point sources (or sinks) in an axisymmetric
diffraction problem, The disturban@es caused by solid bodies are con-
sidered in the present report. For this kind of disturbances, the velocities
of distributions with respect to the shock wave remain unchanged when the
shock passes over, while the strengths of distributions which represent the
disturbances of the solid body are changing across the shock, The diffractions
of shock due to atmospheric turbulance will be presented in a separate report.

The disturbance pressure p behind the shock wave is governed by a simple

wave equation in three wariables (x,y,t), where the coordinates are fixed

with the undisturbed flow behind the shock. The shock condition across the

slightly disturbed shock front yield a boundary condition Dx P = G(y,t) at

, £

x = Ut. Dx e is a second order linear hyperbolic differential operator of
?

x,t with constant coefficients and G(y,t) is a given function related to the



prescribed disturbances ahead of the shock. By means of a Lorentz trans-
formation of variables §,§,E, the wave equation is preserved and the
boundary condition at the shock x = 0 reduces to BQ,EP = é(&,E), where the
operator ﬁi,E is of the same type as Dx,t°

The prescribed general two-dimensional disturbances can be split into
even, odd and axisymmetric functions of y; and accordingly, the disturbance
pressure p behind the shock can be divided in the same manner to even, odd
and axisymmetric solutions. They will be determined separately.

For the even solution of p, Pf(i <0, y=0, t) has either to vanish
before the shock hits the leading edge of the prescribed source distribution
or to be determined from the prescribed source distribution when the shock
passes over it, The disturbance pressure in y > 0 as a solution of the
wave equation can be expressed as an integral of the known distribution
pi (x < 0, § = 0+, £) and an integral of an unknown fictitious distribution
py(i >0, §= O+,E) which is determined by the boundary condition at the
shock, When the even disturbance is represented as an integral of the source
(or sink) distribution ﬁSX,t) on the plane y = 0, the boundary condition at
the shock reduces to a differential equation ﬁi,f p; (x >0, O+, E) = é(§,E).
G(y,t) is a known function related to %{x,t). Since the differential operator
BE,E can be written as (%§-- il g%) (%§f— XZ %E) with il’iz real, distinct and
poéitive, solutions for py(i >0, 0+, t) and hence for p(x < 0,5, t) are
obtained, For odd solution, the same technique is used with the source
distribution replaced by a doublet or a vortex distribution.

When the prescribed disturbance is axisymmetric with the axis normal

to the shock front, the disturbance pressure behind the shock is also



axisymmetric and is governed by an axisymmetric wave equation. The boundary
condition at the shock X = 0 remains the same as the two-dimensiomal case.
The disturbance pressure can again be represented as integral of a known
distribution for the region x < 0 which is related to the prescribed dis-
turbance, and an integral of an unknown fictitious distribution for the
region x > 0 which is again determined by the source distribution ahead of
the shock, through the shock boundary condition,

In Section II, the prescribed disturbances are presented and are expressed
in a moving coordinate system fixed with respect to the undisfurbed flow
behind the shock. Governing equations for disturbance pressure and other
disturbance quantities are derived in Section III. Boundary and initial
conditions for the governing equation for disturbance pressures are obtained
in Section IV, 1In Section V, the Lorentz transformation is first introduced.
Solutions for disturbance pressure are expressed by Possio integrals for two-
dimensional cases and by retarded potentials for the axisymmetric case,
Analytic expressions of fictitious distributions are obtained, Final
solutions of disturbance pressure and other quantities are summarized in
Section VI. The present solution is applied to the shock diffraction by a
thin structure in Section VII. .The result for this simple example reduces
to the solution for the aerodynamics of blasts of Refs, 1 and 2.

The author would like to thank Dr. L. Ting for suggesting the problem

and for his help in the initial stage of this work.

The author would also #e thank Dr. A, Ferri for his readings of the

manuscript and his suggestions.



'II, PRESCRIBED DISTURBANCES

We choose a coordinate system (x’,y’) fixed with the undisturbed flow
ahead of the advancing shock wave. The x’-axis coincides with the shock
propagating direction and the y'-axis, being perpendicular to the x'-axis,
is the second coordinate in the general two-dimensional problem (Fig.l).

We assume that the disturbances are generally weak in the sense that the
disturbance velocities are much smaller than the speed of sound ahead of the
shock., The disturbances are irrotational and stationary with respect to
x',y'. Therefore the disturbance velocity potential and stream function
exist and they satisfy the Laplace equationB.

We further‘assume that the disturbances can be expressed by a combina-
tion of distributions of sources (or sinks), doublets, and vortices along
x '-axis for a two-dimensional shock diffraction problem, and by a distri-
bution of point sources (or sinks) along x ’-axis in an axisymmetric shock
diffraction problem. Since the prcblem is linear, we can treat diffraction
due to each distribution separately. 1In the following, we shall present

the velocity potentials or stream functions for each distribution.

A. Source Distribution in Two-Dimensional Disturbances

Suppose the source distribution along x‘-axis is specified by fo(x').
It is well known that the velocity potential at any point P(x’,y’) due to

an element of the source distribution fo(x{)éx{ at (x{,O) is

08 (= ly") = 4= £ (e]) bxf o [(x! - xD7 + y'2] @.1)



The velocity potential @S(x',y')'due to the entire source distribution

2

can be obtained by integrating over Xy

PRV N U ’ ’ N
.y = = [ £ ) & - x4y

- C0

29 2.2)

Here the integral is assumed to exist.

The above expression can be rewritten in the following form,

‘arf 4 ta
, 1 c(t’-t)= E c £ (x[)dt dx]
’ ’ 2 2 = 2 % ,
) " -0 =0 [e™(t l't]f) - (x '-xl') -y'°7? os
(2.3)
with E = [(x’ - X{)z + y’zj%
L[ ’ ”{ 2 PN ,2%}
and %s = In J‘ £ xDax] A+ [A7 - (x7 - x)7 - y"] A - ® (2.4)

Here t’ and ¢ are respectively the time and the speed of sound behind the

shock. @()S which is due to the lower limit of the integration of t. is

1
a number of very large magnitude. Note that any order of its differentiation
with respect to its argument are zero., Moreover, we shall see it later that
we are interested only in the disturbance velocity which is related to the
derivative of the velocity potential. Therefore, we may disregard the
existence of this quantity. Now we have written the two-dimensional velocity

potential in an "unsteady-like'" expression. The reason for thisstep will be

seen clearly later.

B. Doublet Distribution in Two-Dimensional Disturbances

If the doublet distribution along x’-axis is ”o(xl)' The velocity

potential @d(x',y') due to this distribution is
5



8,y = s [ p e m [ - <P+ 377 2.5)

Again, we can rewrite the above expression in an "unsteady-like" form.

c(t '-tl’)z E e, (x )dt

> x|
8 (x',y") = - =
d 2m FL DL - [ "‘1)2 s _Xl)z PR

(2.6)

with
o

19
L Rl By'j

-C0

Ho(xl')dx{f/n {A + [AZ - - x]f)2 - y’2 ]%} = 0

A - o

C. Vortex Distribution in Two-Dimensional Disturbances

If the vortex distribution along x’-axis is v (x ')n The stream function
& o

at P(x ',y') due 'to an element of vortex distribution \)O(xl')éxl' at (x]f,O) is

12

BEG !,y " = - v k] i (! - =) 4 372 @.7)

The stream function {(x’,y’) due to the entire vortex distribution can be

obtained by integrating over x’,
2 2,
ety = - [ v Epaslm [’ - xhH? 4y 2.8)

The above expression can be rewritten in the following form,

e(t -t )2 E s
W=y = f ¢ vy (rp)deqdxy +y, (2.9
T
R = [c (t —t') - (x! - Xl) - y'2 1*
with
= - -]1—- * ’ 7 { 2 ‘ _ ’ 2 - ,2 1/2
LS 2y v () dx) on A + [A” - (x /) vall }A L (2.10)



Here wo has the same properties of éo:;as discussed above in Eq.(2.3)

D. Source Distribution in Axisymmetric Disturbances

If the point source distribution along x ‘-axis is go(x'), the velocity
potential at any point P(x’,y") is
© 4 I'4
g, (x)ax;

1
3 (X ,syl) = - ) 1
@ i 'L, [ ’-xl')z +y7?

(2.11)

Knowing the velocity potential or stream function, we can determine

disturbance velocity components, pressure and density. The veloeity components

are
u (x 'yl = %, = -g—}i (2.12a)
v (x5 = %f,, = - %}‘g, (2.12b)

. : . X .3
Disturbance pressure can be found from the linearized Bernoulli's equation”,
Ahead of the shock, since the disturbances are stationary and the main flow

is at rest in x’,y’, therefore both disturbance pressure and density are zero.

p = cip =0 (2.13)

The prescribed disturbances shall be used to find a boundary conditions
in order to solve the disturbed flow field behind the advancing shock.
Therefore it is useful to write the velocity potentials and stream function
in a moving coordinate system (x,y,t) fixed with the undisturbed flow behind
the shock, The relations between the moving and the statiomary coordinates

are



x"=x+ (U0 - Ot
yi=y (2.14)
t!=t

Here U is the shock velocity, and (Uo - U) is the velocity of the undis-~
o
turbed flow behind the shock with respect to x’,y”’,
Hence the expressions of velocity potentials and stream function can

be written in x,y,t coordinates., By changing the order of integratioms,

they are
2 2 2.%
e/ BEEE) TN g v -0ye]
¢ (x,y,t) = - —zfﬁjf dt, dx, 5 > 55T
e 9 o 9. Le (E-t)"-(x=x)"-y ]
x-[e” (t-,) "=y 1"
(2.15)
2 2 2.3
ey o L2 jt-(yéc) ztle (t'té) T e et ne)
X,y,8) = -~ 5 %= t X T
d 2 dy ) 1 , 21 - [cz(t—tl)z-(x-xl)z—yz]z
X"'[C (t-tl) -y ]2
(2.16)
x+[c2(t-t )2- 2:\1/2
, Lo J,,t-(y(/ic) 1) Y ; ¢ v [z +(U -0)t]
(x,y,8) =35~ ty L9 5 R
" x-[e (t-tl)z v 1% (e (et ) = () -y ]
2.1
and
o g [x;+(U _-0)t]
@a(xay’t) = - ZEJ‘ Xm 2 02 7 (2.18)
e [Gex)) 4y ]

Here, the integration constants & $ , and § have been dropped, Now it is
? os’ "od o

clear that from Egs.(2.15) to (2.18), they represent the velocity potential



or the stream function at a point (x,y,t) due to moving source, doublet

or vortex distribution. The expression of disturbance velocity components

are preserved,

uo(x,y,t) = %%-= %g- (2.19a)
vo(x,y,t) = %%-= - %g' (2.19b)

When the shock wave passes over the distributions whiéh represent the
disturbances due to a solid body, the strengths of these distributions behind
the shock change., These distributions are related to the shape of the body
and the undistributed flow velocity relative to the body. Ihe velocity
potential and the stream potential have the similar expressions of
Eqs. (2.15) to (2.18) provided that fo’“o’vo and g, are replaced by £,u, Vv
and g respectively, and lower limit of time integral is replaced by a

constant.



III. GOVERNING EQUATIONS

Referring to the coordinates x,y,t fixed with the undisturbed flow
field behind the shock, we can write the differential equations determining
the general two-dimensional unsteady rotational flow behind the shock in

the following:

2+ G0 ryI L Gwh = o (3.1a)
g%m%w%h%—a; (3. 1b)
%m%&e%i&%-%f; (3.1¢)
[§E+a§£+s§-§] (EV -0 (3.1d)

where j = 0 for the two-dimensional problem and j = 1 for the axisymmetric
problem,
Since the disturbances are weak in comparison with the undisturbed

quantities, we may write:

p = P+ p(x,y,t) (3.2a)
o =R+ p(x,7,t) (3.2b)
u = u(x,y,t) (3.2¢).
v = v(x,5,t) (3.24)

Substituting the expressions (3.2) into Egs.(3.1), we have the linearized

differential equations for disturbances

10



g—§+ %}E (Ru) + yj %; (Rvyj) =0 (3.3a)

1 9
X =<t (3.3b)
%%’= - %f‘ay‘ (3.3c)
2
* - %ﬁ (3.3d)

where ¢ is the speed of sound in the undisturbed flow behind the shock

e - 2 (3.4)

Eliminating from the above equations (3.3) three out of four variables,

we have the wave equation

2

2
9 . -i9d (.39 1 97 _
3 P—[5X2+y Sy (y g,)-cz S p=0 (3.5)

p,u,v are satisfied by the following equations

9 -9 _ 9 -
SEHP=FxBu=5g Hv=0 (3.8

It is now necessary to find two initial conditions and one boundary

condtion for p to satisfy uniquely the wave equation (3.5).

11



IV. BOUNDARY AND INITIAL CONDITIONS

A. Boundary Condition at Shock Front

Relative to the undisturbed flow behind the shock, the disturbances
in the front of the shock are moving with constant velocity -(UO-U), while
the undisturbed shock front moves with the velocity +U. The disturbed

shock front can be expressed by the equation (Fig.2)

x = Ut + s(y,t) (4.1)

Since the disturbances are weak, s is a higher order quantity in comparison

with the first order quantity Ut. The shock angle is given by

p = - S 8y (y,t) (4.2)
a higher order quantity.

The shock wvelocity which is directed normal to the shock front at any

point may be written in an x-component US and a y-component Ve

- dx _
U, =g = U+ s, (y,t) (4.3)
5, < US tanf = UB (4.4)

The oblique shock conditions on the shock front x = Ut + s(y,t) are

Pa, = P, (4.5a)
o o 4.5b
p+pq =p P qd. (4.5b)
1-2 JL.I;_>=l'2 _L(_g>
5 4, + Y"1<5 7 9oo * v-1 = (4.5c)
pO
q =g (4.5d)
T To

12



where &n

o))

ey}

no

TO

the normal component of the velocity relative to the shock

behind the shock.
(v - vs) sinf + (u - Us) cosB (4.6a)

-U - st + u

the tangential component of the velocity relative to the

shock behind the shock

(v - v.) cosf - (u - U) sing (4.6b)

v

the normal component of the velocity relative to the

sh;ck ahead of the shock

-v_ sing - w, -1 + US] cos8 (4.6c)
-UO + u, - S,
the tangential component of the velocity relative to the
shock ahead of the shock

vy cosh + [(Uo ~0) + US] cosf {4.64)

- (U0 - sy + \A

13



Substituting Egs.(4.6) and Eqs.(3.2) into Egs.(4.5) and neglecting higher

order quantities, we have
~RU + R[-st + u] - pU = -R U+ R (u_ -s.) (4.7a)
2 2
P+ p+ RU + pU + 2RU (st - u)
=P . +R U2 2R U ( s ) (4.7b)
) o0~ Mo o'o Pt '

# et By [Ee -9

P R
=02 - 20 (u -s)+2—Y——P—9 (4.7¢)
©7 %0 Yo " T y-1 R ’
v=-(U -U)s + s (4.324)
. o vy o

The undisturbed quantities must satisfy the usual Rankine-Hugoniot normal

shock relations; namely

RU = RoUo (4.8a)
_ 2 2
P+RU=p +RU (4.8b)
P
2 P 2 0
1 ~X_ I _ XY__9°
zU + Y*]- R 2U0 4 Y"l Ro (4. 8C)
Hence the shock relations (4.7) reduce to
R[-st + ul] - pU = Ro(u0 - St) (4.9a)
+ 02 2RU( ) = - R U (u ) (4.9b)
p+el + g - Y Py o oo T %t :
- Y (% - 9) = - -
U(st u) + v-1 R Uo(uo St) (4.9¢)
.v= - (U -U) s +v (4.9d)
o y o

14



From Egqs.(4.9), we can solve for Pou, 8, and sy in terms of p, u and Vo

2
cp=(1+ QO) P

1Y)
1
U= Re Pt uo
- 1) _ 82» + 2¢ Pg—l u
- (T, St TR Pl %

-(U0 - U)sy =V -V,

-1 _of-1)°
M?[(Y—l)M?+2]

where Q = -~
o

-1

RNCTE VTR R o
M

2M[(y~1)NF+2]

0

N

(4.10a)

(4.10b)

(4.10c)

(4.104)

By using differential equations (3.3) and (3.5) one can eliminate u,v,p and

s from Egs.(4.10). In this way, a boundary condition for p alone, to be

applied at the shock x = Ut, can be formulated,

D p(x=Ut,y,t) = G(x=Ut,y,t)

X,t
where DX t is a linear differential operator defined as
H
2 2
D = (0 +M+QZM)§——+(1+M2+2MQ)C 0
x,t 1 Btz 17 Sxot
2
+ M( 1+.<‘21M-Qz) c2 -a~—i~
ox

G is an expression of prescribed disturbances

2 2 2
du du Ng 2 du
- - o M fo) 2(1L-M) [s)

15
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(4.12)

(4.13)



B. Boundary Condition on x-axis

Since prescribed disturbances can be categorized as even (line source
distribution), odd (line doublet or vortex distribution) and axisymmetric
(point source distribution) disturbances, the disturbances behind the
shock can be considered as even,odd and axisymmetric respectively. 1In the
two-dimensional problem, we can solve the wave equation in the region
- <x <Ut and 0 < y < ®», Furthermore, the prescribed disturbances which
are stationary with respect to x’, y/ may be taken over by the advancing
shock. Therefore, a boundary condition on the x-axis behind the shock should
be specified.

As stated previously, the disturbances considered are due to the motion
of a body. The strengths of disturbances arevchanging while velocities are
unchanged across the shock. The velocity potential at any point (x s Ut,y,t)

behind the shock due to the source distribution f(x,t) is

2 2 2.%
t-(y/c) e (E-t,) -y 1* cE[x o (U _~U)E]
s s vyt = -2 [ae | e A

0

2 2 2 2%
x-[cz(t-tl)z-yzj% [e (t-tl) -(x-xl) -y ]

(4.14)

where £t = 0 in the instant that the shock hits the leading edge of the

source distribution, and

£lx + (UO-U)t] =0 for x > Ut

i.e. the velocity potential at (x < Ut,y,t) is affected only by the

distribution behind the shock., As y = 0, Qs can be found as4

@S(x < Ut,y - 0,t) = %(ct-y) £[x + (UO - Mt] (4.15)

16



Then the disturbance velocity, by Eq, (2.19a)
v(x < Ut, v - 0,t) = 3f[x + (U0 - Mt] (4.16)

By applying Eq-.(3.3c), we have the boundary condition for p on x-axis

Re Uo-U
py(x < Ut,0,t) = - >

£Tx + (U_- U)t] (4.17)

where the prime of a function denotes the differentiation with respect to
its argument,
Similarly, the boundary condition on the axis behind the shock for a

doublet distribution can be obtained

U -U
p(x = UE,0,t) = - 22 S w'lx + (U -U)E] (4.18)
For a vortex distribution,
re Uo7V
P(x < Ut,0,t) =5 °© _ ulx + (U _-0)t] (4.19)

and for a source distribution in axisymmetric case

ypy(x < Ut,0,t) = - -Izi:—r U—z—-[i g/[x + (UO-U)t] (4.20)
C. Boundary Condition at Infinity
p(x~->->y-ot)=0 (4.21)
D. Initial Conditions
p (x < Ut,y,t =» ~®) =0 (4.22)
pt(x < Ut,y,t =» ~=) =0 (4.23)

17



V. DERIVATION OF ANALYTIC SOLUTION FOR
DISTURBANCE PRESSURE

A. The Lorentz Transformation

The boundary condition at shock, Eq.(4.l1l), is prescribed at the
plane x = Ut, We may introduce a new coordinate system (i,;,E) related

to the old variable (x,y,t) by the Lorentz transformation

e (x-U8) (1-¥)F |, §=y, E=(et-m) (1-1)7"

The plane x=0 corresponds to the plane x = Ut, and the Wavé equation

remains unchanged,

2 2 y

The boundary condition at infinity, Eq.(4.21) becomes
p-0 as (iz + 52)% - o
The boundary condition at shock (x = 0) becomes (Appendix A)
7.8 P& = 0,3,8) = GG = 0,7,B)

Here 5§ : is a linear differential operator of hyperbolic type
?

2 2 2
= 1 9 9 o
ST Tzt T otz
x,t sz ot oxot  ox

with M 2 = ZYM?-(V-l)
(y-1)¥+2

shock. é(§ = 0,§,E) can be related to prescribed disturbances., For an

the Mach number of undisturbed flow ahead of the

even disturbance-source distribution.

18
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(5.2)
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(5.4)

(5.5)



r,s 2 —2 %
= (emT-y I*

. i £-3 £¢0) x=0
G(x=0,7,t) =5’-°-[4 Mzzl Jf dff &g ——5——7
TR T e 2stE KEDTE T

U -U U -U
L - -
where ( = (1-M.2)2 [Mr+E+M .g t + M? 3 - x]

For an odd disturbance - doublet or wvortex distribution

F/(0) x=0

pulfied - 2 2
G(3=0,5,E) = - 5 [ _‘_*_QxMz-zi-l)J %: jt'YdT f[(t-T) -y"] "
R e N S &

s [(E-r)2egty 2

(5.6)

(5.7)

(5.8)

where FO(C) =-ué(g) for doublet distribution, and FO(Q) = vo(g) for vortex

distribution., For an axisymmetric disturance - point source distribution

2 > g"(0)*=0
- - == _.Re 4(yM +1) 20
CE=032E) = o [(y+l)2M(1-M2)}é 11 145 1%

(5.9)

The boundary conditions, Egs.(4.17) to (4.20) are also transformed.

For an even disturbance from Eq.(4.17),

- - Re Yo U - o - -
Pi(xs 0,0,t) = - E_'_Z_— £ [aO(XOX+t)],
- 2 %
where a = Uolc (1-M)

, M
(1-14‘ + —-—c° ) %—
o o

For an odd disturbance, from Eq.(4.18) or (4.19)

1
it

Re U™l F[a (% x+5)]
2 c oo

P(i < O:OaE) =

19

(5.10)

(5.11)

(5.12)

(5.13)



For an axisymmetric disturbance from Eq.(4.20)

U -U

‘O
€

7Py (%5 0,0,8) = - 38 2— g/[a (f i+D)] (5.14)

The two initial conditions Egqs.(4.22) and (4.23) are now

p=p.=0 for t » - ® (5.15)

B, The Possio Integral - Two-dimensional Problem

In general, the solution of such two-dimensional boundary initial
value problems as one defined by Egs.(5.2),(5.3),(5.4) and (5.10)[?r
(5.ISﬂ can be solved in terms of "“temporary sources (or doublet)" spread
over a certain area in the x-t plane characterizing the motion of the
disturbances. Such solutions can be written as Possio integralsl. For

the even solution

P (8,0, ¥)drds

- — (5.16)
[(E-)2-GE) 5 T

pG,5,0 = - 2 [

and for the odd solution,

p(%,7,E)= - I 9.r)drd (5.17)

[(E-1) -(x-8) -~y ]

ﬂlH
3“0/

Here in numerator p}-7 and p of the integrals represent respectively the
“temporary source strength" and the "temporary doublet strength"; the
denominator represents the "pseudo distance" between "source (or doublet)"
£,0,T and point i,;,E. The integrationarea in the E,T plane is confined

by the hyperbola

20



- - 2 2
£ -r=[@0) +5
and the straight lineT = -» (see Fig. 3).

Equation (5.16) can be written in the following form

- - - t-y o0 p_(E < 0,0,r>0
p(x < 0,y >0,t)= - %j - arT J' _?(gz -2 -i L

- 2 2
- x-[(E-m2-5 ¢ [E-D7-G-8)"-y ]

m

- 2 2% - e - 2
1 pt-lx+y ] [ GH(E-T 5 T2
f dr f dg
-0 0
P-(§ > 0,0,T)

[(E-r)2-G-8)%-5 17

(5.18)

Equation (5.17) becomes

- - t-y 0
PGS0,y >0, = -5 [ ar | [dg ]
’ - x-(t~ T) -y

p(E S 0 0l7>0) -
2.% [(t-f) -(x- 5) -y 1*

=R

S i € [Eni-Ge)l5

<]

- 2
3 J,t (x +y ) J&+[(t-*)2-y ]% p(€ >0,0,7)

(5.19)

It is obvious that the method is applicable only if p§ or p is
prescribed on the entire plane ¥ = 0, However, p; or p is given for the
left half of the plane y = 0 (x < 0), while it is unknown in the right
half of the plane (§ > 0). The next step is to find an equation for
fictidious distribution p§ (x > 0,0,E) or p(x > 0,0,E) which will replace

shock boundary condition Eq.(5.4) prescribed on the plane x = 0.

21



C. Retarded Potential - Axisymmetric Problem

By the Kirchhoff's theorem, a solution of the wave equation can be

. . 2
written in terms of retarded potential »3

pe] 5,0,E-[(i-8) 472" Jrdoas

G-yt

- - = 1
p(x = 0,r,t) = - ZEIJ.

For an axisymmetric problem

el E0,E LG "+ 1 ag
[G-)*+R2 17

- - - 1
P(x < 0,7,8) = - 5 (5.20)

-0
Again this method is applicable only if p; is prescribed on the entire
x-axis. p; is given for the left half of the axis (x < 0), while it is un-
known on the right half of the axis. The next step is to find an equation
for the fictitiousdistribution p§(§ > 0,0,E) which will replace shock condi-

tion prescribed on the plane x = O,

D. Evaluation of Fictitious Pistributions

For even disturbances, by substituting Eq.(5.10) into Eq.(5.18) we

have

% I£+[<E-T)2-§2]% P=( >0,0,m)
d - — -
: S EN G I

- - Jom -
Re U, -U ft—yd'r 0 £ [ao(xog.i.er)]

: (5.21)
=7 - 2 2%
w x-[EniFE e -Gy ]

To find an equation for p§(§ > 0,0,t), let us apply shock boundary

condition, Eq.{(5.4)

22



- o 2 2%
t-y [(t- T) -y ] Dg Tp_(g > 0,0’,‘.)

-fe [ e R e
w0 [(e-T) - (x-8)“-y]

U, U 2 -
& B (k)

(o]

R
+t3

t-v [(t-T) -y ] fm[a (T-x ’)]
J‘ ar 2T
[(E-n* -g -y 1*

- - + + Re Ul . . = =z
t-y  [p-,(0 »,O,T)+2Mp- (0,0,7) +3= a (A +2M£f(a t)]
-J’ ar —X& - ; 0o 0
- [(E-n2-5777
- - 2
- Re [4§.‘{_lf+llj f J‘[(t"T)Zéy ]2 [f/”(g )X"O + fl”(gg g)x=0] (5’22)
(v+1)°M [(t-rr)z -5 1"

- .2
where H(Ao) = éf- - 2M Ko+ Xo“ This shock boundary condition can be satisfied,

=

provided that ©

- - - RCU-U- - - - -
D; ps(& >0,0,8) = 5~ a _H(-) )E"la_(t-\ ¥)]
- Re _jhﬂﬁ;tLL_ {fw[50(5+x 7 + mego(E.gg)]} (5.23)

(y+1) M

- i -
with a = Uolc(l—Mfz)2 and ) = c/Uo; and

U_-U
* 7 + - Re
==(0",0,t) + 2Mp--(0,0,£) = - ==
P5z(07,0,%) pyt( ,0,t) 5

—— 3 (k_ +21£7@E E) (5.24)

Now the problem is reduced to obtain a function p-(x > 0,0,E) which
y
satisfies differential equation (5.23) and two boundary conditions at

X = O+,§ = O,E. These two boundary conditions can be obtained by a kind of

23



1
and Eq.(5.24). They are, (sece Appendix B)

""mean value theorem" at x = 0

2 U U -u
-+ - _ ZM o -]__ 0—‘ 4, =
P=(0",0,8) = RCRMZ_l 2412 ) £/3_B)

U
2
- G2 ) ED] (3.23)
and
3 U U -U
M o, 1 o - : S
pon(0" Ot)—-Rc{[ AR X, +a0]a @D
[4M3 U, SMZJ i £ t)} (5.26)
M -1 e y+1
It is shown in Appendix C that the solution for Eq.(5.23) has the
form
p5(E > 0,570,t) = Re {Z A£G (B4, +Z B,£/[E (E4,®1}
i=0,1,2 i=1,2
- Re -}—2- 4_@_ +l)] { L ’[a (tHx)] + - f’[a (t-)\_x)} (5.27)
a_ (y+1) ™M H(L)
3 2.3 - = M? Mo e - -
Here a = UO/c(l-M Y4, A = c/UO, ko = (1- + —E—> ﬁ;’ xland Ay are two real,

distinct and positive roots of the quadratic equation

- -2 -
B =& +2mk + 45 =0 (5.28)
M
U_-U H(-X ) °
A = , A, and A, are the solutions of the two simultaneous
o 2c HEY ) 1 2 ;
o

linear equations
24



ol U U
Ap+ A, =5 24— 1- (5.29a)
ATl = [ e 2T

and
3 U
_o

.- AT S
S e R Mz T [}‘0(1 " 56

) + 4N ] (5.29b)

and B1 and B2 are the solutions of the other two simultaneous linear

egqautions
o Yo am L 4y -1) '

R R e~ (5.30a)
L2 g e il (y+1) J[mx) HR)

and
- - e Y 4(@&1) 1
X.B. + \.B. = - 2 (5.30b)
R Y“ [( +1)°m :H:H( 30 H(k)']

For odd disturbances, by substituting Eq.(5.13) into Eq.(5.19), we

have
. w0 2 - - 2
L3 t-(x2+y )% x+[(t-T)2—y ]% & > 0.0.1)
p(x<0,5>0,8) = -~ [ ar az s
m ey '&, g [(t-T) -(X-’é) ~y ]2
tey D - -
U -U Fla (\ &+n)]
_Re.o ~ 9O_ j dr J‘ de oo

T 27 e - 2 - 92 2%
ay o X-[(t T) 'Y ]2 L(t—T) '(X'—g) -y ] (5 31)

To find an equation for p(g > 0,0,T), let us apply shock boundary condition

Eq. (5.4)
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- - -2 2y . -
D t-y I[(t"r) -y ]2 Dp Tp(§>0’O’T) c Uu-U 2
0

R ) - - a
= dar dg 31 —— LR o & H(-)\ ) 2
£y + 2 2.3 ey TR
=y [L(E-N"-y 17 Fla (rk )]
[a ] el e
) 0 [(E-1)°-8°-52 7%
£-y + + Re Uo-U - = -
. §_.rt-y Pg(O ,0,1) + ZMPT(O ,0,T) - §—~—E~—<ao(xo+2MDF (aot)
57‘] drt

- [(E-m)? 5217

- o 2 =2 "i n = _ “ -
- Re [ic sz_‘_l) a tJ'q(}i’T f[(t"rég-y ] [Fo((;g___a)x =0+ FO(€§=-§)X = 0]
(D)2 9

1
2%

- 2
0 (GO ES

Again this boundary condition can be satisfied provided that

U -U
- - - __&C_:_ [¢) = .." "es T =
by ¢ p(x > 0,0,t) = - 5= —— a H(-\ )F"[a_(t-A x)]

¥ Re &ﬁﬂﬁzﬂl {F'1a (4] + Fila (BB 1}

(v+1) M
and
+ = + - R V. . -
p;(07,0,8) + 2Mp-(07,0,8) = 3% 2— i ({ + 2MF'@E D)

Now the problem is reduced to obtain a function p(i > 0,0,t) which

satisfies differential equation (5.33) and two boundary conditions at

+

x =0 s § = O,E. These two boundary conditions are (See Appendix B)

26

(5.32)

(5.33)

(5.34)



2 U U ~u

+ o= f2M o 0 - = [
p(0 ,0,t) = -Re [&;12—:]—- =+ '—Z—E-) F(aot) - kM‘Z >F (a t)]
(5.35)
and
3 U U -U
+ o= M o o} - = Lo T
p5(07,0,8) = re{ [ S gt s |3 FG D
3
4M SMZ e P
;E?:[ + o] A F (aot)} (5.36)

It is shown in Appendix C that the solution for Eq.(5.33) has the form

PG >0,5= 0,8 = - re{ )  AFE EAPI+) BF[E(ELDI}
i=0,1,2 i=1,2 ‘

L [‘*LLM-ﬂl] (- B EH0]+ —- 7 (3 JLETDIL (5.3
(y+1) M = CH(-Y) HQL)

where Ai’Bi and Xi are defined in the case of even disturbances.,

For axisymmetric disturbances, by substituting Eq.(5.14) into

Eq.(5.20), we have

. .. @ yp-(E > 0,0,E--) U-U 0 g'fa iz
p(x < 0,y,t) = - % J de v 5- r Re f a [ao(Ko§+ ) ]

T
(5.38)
- - 2 =2 3
where r = [(x-E)” + y )]®. ©Now let us apply shock boundary condition

Eq.(5.4) to find §p§ (€ >0,0,E).
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'co 13j t[;'rpi(g >0,0,E-r)] L U-U _ = gf[a (E-r-k )]
I dg z 2r ¢ a H(-A,) I dg z
0

U
1 - + - - - + = -
"3 {ZMyp).rt.(o ,0,E-9) + Fp.. (07,0,E-5) + £

- 20— a emi g[8 (E-D] }

_ _R£[ 4(1142 + 1) ] ‘andg [g”/ (g ) x=0 + g”/(gi X‘O]
m L aad)? (+u : (5.39)
Again, this boundary condition can be satisfied provided that
U -U
By ¢ [7p5 (2 >0,0,5] =38 2— & B )e"lE (EA D]
(5.40)
a D (o e ) + 5008, )
(1-M7)? (z+l)™M
and
- + = - Re "o - p= =
oy (07,0,8) + 25 poz (07,0,8) = - 22 2— 3 (X #2Mg"GE ) (5.41)

It is shown in Appendix B, that two boundary conditions for Eq.(5.40)

are
U
Fps(0*,0,8) = £ j_(fl I R (;‘21 B )eay®)
(5.42)
and N Re [ @ Y 1 Yo7V
Tpog(07,0,E) = - 22 { [5-3+7 =« a0 | 3 g" G e
(5.43)
3 U 2
4M 8M wy= =
- [b—dz-:i‘ 'é"g' + TY-'T‘I aOg (aot)}
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As shown in Appendix C, the solution of Eq.(5.40) has the form

Gop x>0 = 0B = 8 {) A B EIDI ) o EED] |
i=0,1,2 i=1,2

_Re 1 [ _ 4@l L o /3 (fH0)] + =dld (-1 ]
™t : (1—M.2)%(¥+1)2m] ey R0 + qgfld i)

(5.44)

where Ao’xi are defined in the case of even disturbances. C1 and C2 are

the stations of the following two simultaneous linear equations

a8 Y am 1 s 1,1
GrG -2l T Tt 2 l:(l~l‘12)lé(w~l)2M 17y * 50
(5.45a)
and
_ we Y% af % aoyM+1y 7T 1 1
£.C, + 34,0 = - 55— — - - M] =y
117 f272 o1 C v+l 502 [ (1'M?)%(Y+1)2 L% H(X)]
(5.45b)
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VI. FINAL RESULTS

_The results obtained in Section V can be summarized as follows:

For even disturbances

t-y s .
L U _-U 0 £'la_(Th
p(x,y,t) = %9 5= f dr j dg - :_O(T °§)% 5
o i-[(E—T)z'&']% [(t"'r) -(x-8) ".V]z
.2 - oo 2 -2
i BT BIEDST T s ehie]
-—T% Aij dr j de - g-lz-zxg
o2 = 0 [(t-m)"-(x-8) -y ]
- -2 2y - 2 -2y -
e t-lx +y 1% =x+[(t-1)"-y ] fé[ao(T_kig)]
L ow] e [ -G 2 T
L, : [G-0°-G-9)® 5]
T R
-|x + + (t- - 2 oo 3
NS 10 A 4 XL
a " b+ H(-A) ¥ 5 [(E-n’-G-0)2-5 1°
By Eom 2y
. y EDY T £/E (rae)]
' [ e | d — o}
) B 0 LCE-m)"-(z~8)" -y ]

(6.1)
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For odd disturbances
£y -
U -U 0 Fla (v+% B)]
37 - ;‘_ [(E"T) _; ]% [(t'T) -(X-g) -y ]

L 225 L g
BN FREDSTT o 05 g
Re . > >
+;;-Z A, -JI dr f g

[(E-m)2-G-8)2-5 1°

- 2% - . 2 22.0% - -
t-[x +y 1% =+[(t-1) -y ] Eo[ao(T-Xig)]

) Bi-g_—f dr I dg GG T

2 3
e 2 2% mIENT T
Re _1. [4(yM2+1)] L2 ]"(x ) [ F_[3_(1+D)]
T T2 2 -
Toa, DM tEGD) ¥, 0 [(E-n2-G-02-5 17

.2 2y . 22

(& 457 #(E-n?F 1? F [2 (18]

+ —L -a-:f dr _f ae g ———s
HQ\) 0Y uew 0 [(E-7)" -~ (x-8)" -

51 }

(6.2)
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For axisymmetric disturbances

- - - Re Uo—U
p(x,y,t) = 5= 55—

o g'li (E-14,D)

0 g'la (t-r#) 8)]
f de o o)

i=0,1,2 0
"o Z ¢; ] 4
i=1,2 0

Re 1 4(1M?+1)
¢ 2t - 2 [ 2. %
a_ (1-M)?(y+1)

R | dg

J

HQ) r

By using the transformation (5.1), the disturbance pressure p(x,y,t) can

be obtained from p(x,y,t). From differential equations (3.3) and shock

1 = sJla (E-1-AB)] )

dg

g;[50(5~5+5\§)]

relations, Eqs.(4.10), the following expressions are obtained,

The disturbance density

1
p(x,y,t) = pv p(x,y,t) +
[
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0)
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(6.4)



The x-component disturbance velocity

t Q
1
u,y,t) = -3 [ pyymar + 2 a(eyt =B vy (6.5
x/U

where ub(x,y,t) depending on the prescribed disturbances is defined by
Eq.(2.19a).

The form of shock front

Q, t 2 t
- 2 - 2c M -1 -
x = Ut - R@_-0) J p(x=UT,y,T)dr U0 Gt u_(x=Ur,y,T)dr

-0 -0

(6.6)
The y-component disturbance velocity
1 ot 0, x/0
v(x,y,t) = - Ef py(x,y,6)dT + 3 f py (x=UT,y,m)dr
X/U -0
x/U
+-2—E-—M-2-——]; J\ u_ (x=Ut,7)dT + v_(%,7,t)
v+l M Jo OF ? o
(6.7)

where vo(x,y,t) and uo(x,y,t) are related to the prescribed disturbances

by Egs.(2.19).
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VII. CONCLUDING REMARKS

Solutions for the diffraction of a plane shock by general two-dimensional
weak disturbances are obtained analytically by a method developed for the
aerodynamics of blastsl’z. The disturbances which are caused by moving bodies
can be described by a combination of distribution of sources (or sinks), doublets
and vortices in a two-dimensional case, and by a distribution of point sources
(or sinks) in an axisymmetric case. The solution for the disturbance pressure
behind an advancing shock in each case is expressed as integrals of known
distributions*. The shape of diffracted shock and other disturbance quantities
are expressed in terms of disturbance pressure and disturbance velocity com-
ponents ahead of the shock.

The present solutions can be applied to many practically interesting shock
diffraction problems. The simplest example is the diffraction of a shock by a
thin structure%®¥* in still air, Suppose that the shape of the thin structure
is given as y = h(x’) or h(x + (Uo - U)t), we can determine the corresponding
source distributions based on this shape. Ahead of the shock the air is still,
there is no disturbance caused by the pressure of this structure. The source
distribution fo(x + (U0 - Mt) for x > Ut which represents the "zero"
disturbance is zero. Behind the shock, the undisturbed flow velocity is (UO-U)
relative to the structure. The disturbance due to the structure can be

measured by the y-component disturbance velocity

*Dr, Ting pointed out that the solution of the problem can be interpreted as

images of moving strengths.

**For example, a wedge with small wedge angle.
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v(x S Ut, y =0, t) = (U - 0) n'lx + - ut] (7.1)

This disturbance velocity component should be equal to the value due to

a distribution of source on the axis given by
v(x < Ut, y - 0,t) = ¥f[x + (UO- ] (4.16)

Equating Eqs.(7.1) and (4.16), we have the corresponding source distribution

behind the shock

flx + (Uo- nt] = 2(UO- U) h'[x + (U0 - 0t) (7.2)

If we substitute Eq.(7.2) and fo= 0 into our general solution in Sections
V and VI, we will have exactly the same result as given in Ref. 1.

Using the similar procedure, we can determine a point source distribu-
tion that represents a slender axisymmetric body. The results of diffractien
of a shock by this slender axisymmetric body is consistent with those in
Ref. 2. For the case of moving bodies, the distributions corresponding to
a body ahead of a shock is no longer zero. Their strengths can be determined
from the relative flow velocity and the body shape. Results for shock

diffraction of moving bodies shall be presented later in a separate report.
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APPENDIX A

SHOCK BOUNDARY CONDITION

The shock boundary condition in the x,y,t coordinate system has been

found to be (Section IV)

DX tp(x = Ut,yt) = G(x = Ut,y,t) (4.11)
with _
= (Q, + M QM)—52—+ 1+M2 2M0.) 52
Dp,e = W+ M GW Tt v aMe S5
(4.12)
M(1+QM-Q) 2 82
and 2
0 u 5 u
2(1- M )
G(x = Ut,y,t) = -Rc [ + Mc +
at2 Bxat v+1
(4.13)
2
CZ 9 gq_]
e
By using Lorentz transformation, Eq.(4.11) becomes
D_ _ p(x = 0,7,t) = G(x = 0,y,E) (4.1
x,t
where
2 2 2
S SN Y K X @.2)
X,t Mi Jt dtdx  ox
and 2
ou du
P 2M 2 o ¥i5 o
6= 0.y.8) = - Re " T 37 vl M ERet
(a.3)
2 a u
(1+Y+1 ]
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é(§ = 0,y,t) can be written in terms of distributions

]

Transforming from Eq. (2.15), two;dimensional source distribution is

5 G5 ; f—&d [(E-1 251 ) £ ©) @
3 X,y,t) = = i-,r? T § = /] - 5D ;'2 + o8
-® i_[(E_T)Z_’?‘z]]f (t-r)" -(x-8) -y ]
(A.4)
with
L1 U -U U -U
¢ = (1-M2)§ [M‘T +E+M 8 t + Mz 8 :':] (A.5)
To find disturbance.velocities, let us change variables in Eq.(A.4)
E-7 =7 x-E=E
-2 L -
L2 LG £ (D
G50 - | ar | oy 2 2t 2, 4.6
y )7 TeE -y
U U -U
with ¢ = (1-M2)-;é MU—OE + (1+M g >§< -Mr - E (A.7)
-= a0 B % x %ot
B T HTE KT X
R e S (9
=_—Ej_d7f_ 2;1 [T-'Z-ZJ
-(T )2
2 L -
d3u U _-0-2 -y)*? £26)
- Lo 2] [ & —o
3% 2” (1-v) [ u ] ‘[ f 2 2% [?2- 52- 31
: (T-v)
2 '2 2 ¥//4
U1 o Y U Uy @ (T -y)* £(0
ORE 2T (18 U Dot 5 I Jr(}z-irz)»dg I

41



d%u v _-U - 5 ) £7(0)
2 = @ /U) [1 + o 2 ]2 f ar I - fzg_z T
at (1 M) “(T - y) [T 'g -y ]
substituting into Eq.(A.3), we have
2. % -
(- 757 . L
G(x,y,t) = Re M]f J- 2 (.)2 2.3
(+1>M -2)% [t - E&- 51
or
- - 2 -2 % -y
I +[(E-T)"-y"] £7(€)
G(x,y,t) = ic [-SX-4ill' f fx dg ————5————
(Y+1) M [(_ T)Z _2];2, [(t" '7") = (X'g) -y ]2
x-[(t- -y
(4.8)
At shock x = 0
(4D £y [(E-D7- T8 £7(C) - _
G(x=0,y,t) = Re [ +1 ] f daT f dg 2 ZX*S .
(Y+1) M [(t-’r) = ]% (- -€ -y ]
(A.9)

Following the similar procedure, we can find G(x = 0,y,t) for other
distributions. FOor two-dimensional doublet distribution,
- puf 2 -2 ;’ n
t-y JLE-MT-3 1 O,
fe [L000 ) & 17 | g Tt

55 0%
(Y+1) M _[(E_,.r)z_ ;]% [(t t) —g -y ]

G(x=0,y,t) = ==

(A.10)

For two-dimensional vortex distribution,

- 2 2%
- - [(e-m"-y 1* VI©)
com0s - B[] T (7T _Hiae
(y+1) M - -[(t- T)Z 2]% [(t-D"-8 - y]

(A.11)
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For axisymmetric source distribution,

-~z 4(sz+1) gl”(ox—o
G(x=0,y,t) = d —7—-——— (A.12)



APPENDIX B

BOUNDARY CONDITIONS FOR EQS.(5.23) (5.33) AND (5.40)

Following the argument of Ref. 1, a missing boundary condition can be
found from a kind of "“mean value theorem" at x = 0+, y = 0, t. For the case

of even disturbances, it gives the relation

Py 0%,0,8) + pg (07, 0,8) = 2p; (0,0%,E) (3.1)

p?(O',O,E) is obtained from the boundary on x-axis, Eq.(5.10)

U -U

P (07,0,t) = - Re f’(éoE) (8.2)

p§(0’d+’E) can be derived from shock relations.Eqs.(4.10c) and (4.104)

_R_ _ _2¢_ M -1
Py = Q, [(Vt Vot) v+1 M uo},] (8.3)

Disturbance velocity components can be derived from the prescribed distributions.

Hence

U 2
. _ - _ R o) ’ - ’ _ 2¢ M -1 ; }
py(x = ve, 07, ) = - {2—- l:f (u_t) fO(Uot)] preg e U

or
2 U 2 U
+ - M O ~t,~ = M 0 2M> 1,- = ]
ps (0,0°,6) = Re| 2o D - <M__2-1 2+ S)EED (B.4)

Substituting Egs.(B.2) and (B.4) into Eq.(B.l), we have one of the two

boundary conditions for Eq.(5.23).

+ o 2w Yo UeU o md Yo am.,- -
p§ (0 ,0,t) = Re [ (;ij' 22'+ Ef——)f (aot) - (;?j;. 22'+ ;II)fo(aot)]
(B.5)
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ﬁifferentiating Eq. (B.5) with respect to t and substituting into Eq.(5.24),

we have the second boundary condition

we

U
o

+ -\ _ ) 8
pii (O ,O,t) = - Rec {

we U 8M2 -
- "'"'_+ NFL
¥-1¢ Y

For the case of odd disturbances,

X 0, § = 0+, t gives the relation

p(0",0,E) + p(07,0,E) = 2p(0,0",E)

p(O-,O,E) is obtained from Eq.(5.13),

U -U
0
2¢c

p(07,0,t) = Re F(aoE)

Tt
M -1

p(0,0+,E) can be derived from shock relations Eqs.(4.10)

i Yo

-
p(o,o ,t) = - RC[ 2
M -1

P F(aot) -

U -u - - -

‘ aof (aot)
(B.6)

£ B}
the "mean value theoreﬁ” at
(B.7)
(B.8)
U’

e trap]  an

Then from Eqs.(B.7) and (5.34), we have two boundary conditions for Eq.(5.33),

U U
p(0+30’E) = - Re [(f‘:"z—_o"l'
-1 ¢

and

U ~-U

p (0 0 t) Re { [4M? U

AV
_[Mz

[¢)
c
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(B.10)

* 2 Gt 4M)] i F'G D

J JF'GD}
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For the case of axisymmetric disturbances, the "mean value theorem"

gives

7Ps 07,0,8) + 7p:(07,0,8) = 2§p3-,<o,o+,é> (8.12)

§p§(0+,0,5) is obtained from Eq.(5.14)

U -U
- + = Re "o
ypi', (0 ,O,t) - T 2c (B.13)
§p§ (0,0+,E) can be obtained from shock relations Eq.(4.10)
RC U o -U - -
795(0,0%,8) = [(Mz —) &'GD)
(B.14)

2 Yo paMN . - 2]
) g{-l c_o * y—f-l)go (aot)]

Then from Eqs.(B.12) and (5.41), we have two boundary conditions for Eq.(5.40)

7pg(0",0,8)= 3¢ [(M _U) g'(a_b)

2¢

U

B Ciz&z__l-c_o y+1) go(o ]

and
U -U
75y (07,0,8) = - Be{ [“MB S G, + 4] 3 g"GD

(B.16)

Y B p)
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APPENDIX C

SOLUTIONS OF EQS.(5.23),(5.33) AND (5.40) WITH
THEIR BOUNDARY CONDITIONS

A. Even Disturbances

The solution of differential equation (5.23) canbe written in the

following form

p§(x >0,0,t) = T _,(E-A,x) + l‘ez(t-XZX)

U0 B(A)
+ Re 5 — . R £la_(t-A %) ]
I: 4(yMZ+11]
(yv+tLH'M

. (C.1)
{——H_(%X-)_ f(;[é_lo(i-iﬁzi)]

@ SRR

where Xl and XZ are two real, distinct and possitive roots of the quadratic
equat ion,
- 2 - 1
HQ) = MA+ —;,_— =0 (c.2)
o
I;l and I;Z are two arbitrary functions to be determined by two boundary
conditions Egs.(5.25) and (5.26)
U U H(-A )

- = 2M2 o o) ( -0 > 1
= = e |1 - t
T (E) + T, (E) = Re { [1»3-1 + = w6 )] /0D

Cc

(c.3)

o Yo am 1 aden (H 1 N e -
- + - : f'(a t
T e T Hm)] JGD}
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3 U U-U H(-A )
- B - 1 N 4M3 _o O - - o - "= o=
KT + K,TH® = e { l-rz-l 2 42— (I 1 o wn) ] & £ )
; ) (C.4)
U -
4 o, 8M N ‘4(vN€+1) 1 1 ]— vy T
-] ——x + - £’(a t
[ -1 € y+1 ;02 (Y+1)2M (H(éf? H(k)) %o o(ao )}
This leads to
rel(E) = Rc [Alf’(éoé) + Blfé(éoE)] (C.5)
rez(E) = Re [Azf'(aoE) + Bzf(;(e-toE)] (C.6)
Substituting qu.(C.S) and (C.6) into Eqs.(C.3) and (C.4) and equating
coefficients of f'(éof) and fé(éOE), we have
U U -U H(-\ )
2 0 0 0
A, + A = —5——+ 1l - == (c.7)
1 2 M?-l [§] 2¢ ( H(ko) )
- - 4M3 Uo Uo-U M H(nio)
N A+ N A, = 55— —+ r)& 1-— + 4M (C.8)
171 272 M?-l & 2¢ L o( H(lo) ) ]
and
2 U :
o Yo 4m 1 4o T 1 1
B. + B = - _—- — 4 I + (C.9)
) 2 2 - -
1 v-1 ¢ YAl any'a [H(-X) H(V) ]
3 U 2 - 2
ey el %1_ - é_“YMZJZrD = -—] e
M-1 o (y+1) M TH(-A) HO)
. i1
since 11 X ’ #0

Therefore Al’A2’Bl and B2 can be determined uniquely from Eqs.(C.7) to (C.10).
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B. 0dd Disturbances

The solution of differential equation (5.33) can be written as

p(x >0,0,t) = I‘Ol(t': - LK) + roz(E - 12:2)

U_-U H(-XO) o
- Rc - Fla (£ - 3 x)]

2¢  HQL) ° °

1 4yl 1 - - - -
+ Re =5 Fla (t+4 =]

a (v+1)2M H(-))

1 - - - -
4+ ——F [a (£ -\ %x)]
gy ° °

Two arbitrary functions Tbland IbZ can be written in the following form

1"01(5) - Re [Alp(éoE) + Blpo(aoE)]

i

IbZ(t) - Re EAZF(aot) + BzFo(aot)]
Al’AZ’Bl and B2 are determined uniquely from Egs.(C.7) to (C.10).

C. Axisymmetric Disturbances

The solution of differential equation (5.40) can be written as

yPg(x > 0,0,8) = T (€ =A%) + T 5(t - 4p%)

U -U H(-A))
Re o ) e .- - =
S g'la (£ - A x)]
' 2¢ H(io) o o
_Re 1 4(vM +1) 1 o= = ==
n é:z (1-»42%\#1)214 H(-A) Bol2o(® + Ax)]

+ ——H(;) g/la (& - i@ }
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Two arbitrary functions I;l and I;z can be written in .the following form

T, == Bg'GH +csl@E D] (C.15)
To® = 22 [a,8°@E ) + 68 (3 D) ] (c.16)
A1 and A2 are determined from Eqs. (C.7) and (C.8). C1 and C2 are determined
from
af Yo 4 4y +1)
C,+C, = - ————--13 -
e I LIM)WH)M]
(C.17)
[ v —]
H(-A)  HQD
and
U 2 - 2
Seotic = _5*_143_.__2_&.4___&_[ SeCEs M-
e R ' T o (1) E (ya1)m
(C.18)
[l
H(-A)  HQL)
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